Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411140

RESUMO

Eukaryotes respond to secreted metabolites from the microbiome. However, little is known about the effects of exposure to volatiles emitted by microbes or in the environment that we are exposed to over longer durations. Using Drosophila melanogaster, we evaluated a yeast-emitted volatile, diacetyl, found at high levels around fermenting fruits where they spend long periods of time. Exposure to the diacetyl molecules in headspace alters gene expression in the antenna. In vitro experiments demonstrated that diacetyl and structurally related volatiles inhibited conserved histone deacetylases (HDACs), increased histone-H3K9 acetylation in human cells, and caused changes in gene expression in both Drosophila and mice. Diacetyl crosses the blood-brain barrier and exposure caused modulation of gene expression in the mouse brain, therefore showing potential as a neuro-therapeutic. Using two separate disease models previously known to be responsive to HDAC inhibitors, we evaluated the physiological effects of volatile exposure. Diacetyl exposure halted proliferation of a neuroblastoma cell line in culture. Exposure to diacetyl vapors slowed progression of neurodegeneration in a Drosophila model for Huntington's disease. These changes strongly suggest that certain volatiles in the surroundings can have profound effects on histone acetylation, gene expression, and physiology in animals.


Assuntos
Drosophila melanogaster , Histona Desacetilases , Humanos , Camundongos , Animais , Histona Desacetilases/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Odorantes , Diacetil , Inibidores de Histona Desacetilases/farmacologia , Drosophila/genética , Sistema Nervoso/metabolismo , Expressão Gênica , Acetilação
2.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36865229

RESUMO

Eukaryotes are often exposed to microbes and respond to their secreted metabolites, such as the microbiome in animals or commensal bacteria in roots. Little is known about the effects of long-term exposure to volatile chemicals emitted by microbes, or other volatiles that we are exposed to over a long duration. Using the model system Drosophila melanogaster, we evaluate a yeast emitted volatile, diacetyl, found in high levels around fermenting fruits where they spend long periods of time. We find that exposure to just the headspace containing the volatile molecules can alter gene expression in the antenna. Experiments showed that diacetyl and structurally related volatile compounds inhibited human histone-deacetylases (HDACs), increased histone-H3K9 acetylation in human cells, and caused wide changes in gene expression in both Drosophila and mice. Diacetyl crosses the blood-brain barrier and exposure causes modulation of gene expression in the brain, therefore has potential as a therapeutic. Using two separate disease models known to be responsive to HDAC-inhibitors, we evaluated physiological effects of volatile exposure. First, we find that the HDAC inhibitor also halts proliferation of a neuroblastoma cell line in culture as predicted. Next, exposure to vapors slows progression of neurodegeneration in a Drosophila model for Huntington's disease. These changes strongly suggest that unbeknown to us, certain volatiles in the surroundings can have profound effects on histone acetylation, gene expression and physiology in animals.

3.
Interface Focus ; 11(2): 20200043, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33633836

RESUMO

Many insects can detect carbon dioxide (CO2) plumes using a conserved receptor made up of members of the gustatory receptor (Gr) family Gr1, Gr2 and Gr3. Mosquitoes are attracted to host animals for blood meals using plumes of CO2 in the exhaled breath using the receptor expressed in the A neuron of the capitate peg sensilla type on the maxillary palps. The receptor is known to also detect several other classes of odorants, including ones emitted from human skin. Here, we discover that a common skin odorant, butyric acid, can cause a phasic activation followed by an unusually prolonged tonic activity after the stimulus is over in the CO2 neurons of mosquitoes. The effect is conserved in both Aedes aegypti and Anopheles gambiae mosquitoes. This raises a question about its role in a mosquito's preference for the skin odour of different individuals. Butyric acid belongs to a small number of odorants known to cause the prolonged activation of the CO2 receptor. A chemical informatic analysis identifies a specific set of physico-chemical features that can be used in a machine learning predictive model for the prolonged activators. Interestingly, this set is different from physico-chemical features selected for activators or inhibitors, indicating that each has a distinct structural basis. The structural understanding opens up an opportunity to find novel ligands to manipulate the CO2 receptor and mosquito behaviour.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...